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Abstract 
Formalisms are developed for the scattering 
intensities of d-dimensional modulated molecular 
crystals, in which molecules or groups of atoms dis- 
place as rigid bodies. Expressions are given for the 
relation between the displacements of symmetry- 
related atoms, and phase restrictions are discussed 
that occur when rigid molecules are located at special 
positions. The formalisms have been incorporated 
into a computer program JANA5 applicable to the 
case of a two-dimensional modulation. The program 
allows inclusion of up to six higher harmonics of 
arbitrary order. 

Introduction 
In a previous paper (PetH~ek, Coppens & Becker, 
1985; paper I) we developed formalisms to describe 
the scattering of modulated molecular crystals in 
which molecules or groups of atoms are displaced as 
rigid bodies. A computer program based on these 
formalisms has been applied to several molecular 
modulated crystals, including thiourea (Gao, 
Gajhede, Mallinson, Pet~f~ek & Coppens, 1987; 
paper II) and [bis(ethylenedithio)-TTF]213 (Leung, 
Emge, Beno, Wang, Williams, Petfi~ek & Coppens, 
1985). In more recent studies we have used the SUNY 
beamline at the National Synchrotron Light Source 
to measure the very weak 2k~ satellite reflections of 
TTF-TCNQ (tetrathiafulvalenium tetracyanoquino- 
dimethanide) which occur below the metal-insulator 
transition (Coppens, PetH~ek, Levendis, Larsen, 
Paturle, Gao & LeGrand, 1987). The phase stable at 
the experimental temperature of 15 K is two- 
dimensionally modulated, with q vectors which are 
at an angle to the two fold axis of the monoclinic 
crystal class. In order to treat such two-dimensionally 
modulated molecular crystals we have extended our 
previous formalisms to the general d-dimensional 
case. We present here scattering expressions, relations 
between the displacements of symmetry-related 
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atoms, and a discussion of general restrictions which 
apply to rigid molecules occupying special positions 
of the crystal's space group. Tables for symmetry 
restrictions in four-dimensional space groups will be 
presented in a subsequent publication. 

Scattering formalism 
Let us consider a d-dimensionally modulated crystal 
in which the vth atom in the unit cell defined by n is 
located at 

r.v=r°+n+u,{q1(g~+n),.. . ,qd(g,+n)} (I) 

where r ° is the average position of atom ~,, u~ is the 
d-dimensional periodic vector field u, ( x l , . . . ,  xa) = 
u~ (x1+ n l , . . . ,  Xd+ rid) ( n l , . . . ,  nd being integers), 
q~ , . - . , qd  are incommensurate modulation vectors 
which are rationally independent in the basis a*, a2* 
and a3*; g~ determines the phase reference point of 
the displaced entity (see paper I). 

In the following we will confine ourselves to the 
case of several (say l) harmonic waves. This means 
a truncation of the infinite Fourier expression for u.: 

I 

u~= Y. U~(i) s i n [ 2 r r ~ i . ( n + g , ) ]  
i=1 

1 
+ ~ UY(i) cos [ 2 ~ ! , .  (n+g , ) ] ,  (2) 

i=1 

where qi = y a=~ au ~ ( a ° being integers) are the selec- 
ted linear combinations of the modulation vectors 
and U~(i) and UY(i) are the amplitudes of the sin 
and cos displacement waves respectively. 

The contribution of the uth atom to the structure 
factor is given by 

F . ( Q ) = f ~ ( Q )  exp 2~'iQ. r°~+n 
n = (0,0,0) 

I 

+ ~ {U~(i) sin [2Zr~l,.(n+g~)] 
i=1 

+ UY(i) cos [27r(1i. (n + g,,)]}) ] ,  (3) 

© 1988 International Union of Crystallography 



236 MODULATED MOLECULAR CRYSTALS. III. 

wheref , (Q)  is the atomic scattering factor containing 
the unmodulated temperature factor, Q is the scatter- 
ing vector and the summation runs over a 
parallelepiped with edges N,a , ,  N2a2, N3a3. We 
assume that the effect of the modulation of the tem- 
perature parameters is negligible. 

An important simplification of (3) follows from the 
fact that the part representing the modulation con- 
tains only the projections Q . U ~ ( i )  and Q .U~( i ) .  
Introducing Uv(i) and X,,(i) such that 

U~(i) = {[Q. U~(i)]2 + [ Q .  uY(i)]2},/2, 

sin x~(i) = Q .  u~( i ) /u , , ( i ) ,  (4) 

cos x~(i) = Q .  u~( i ) /u , , ( i ) ,  

we get from (3) 

F,(Q) = f , ( Q ) e x p  (2"rriQ. r °) N'~ 2N' exp (27ri{Q. n 
n = ( O , O , O )  \ 

+,=,~ U~(i)sin[2zr~l,.(n+g)+x~(i)]} ). (5) 

With the Jacobi-Auger expansion 

co 

exp (iz sin a)  = ~ J_.,(z) exp (-imo~), 
m = - - o o  

(5) becomes 

Fv(Q) =f~(Q) exp (27riQ. r °) 
co l 

x E H {S_,,,.[27rU~(i)] 
ml,...,r¢ll=--oo i = I  

x exp (-27rim~l~. g,,) exp [-im~x~(i)]} 

[( t] x 2 exp 2~-i Q - ~  m,rl; .n  . (6) 
n=(0 ,0 ,0 )  i = l  

For N; >> 1 the sum over n leads to principal maxima 
at every point H = h a * +  k a * +  la*. This means that 
reflections occur for Q = H+~l,=~ m,~h. 

We can describe the different models through selec- 
tion of the vectors q: 

(a) l= d; a o = 8 o. This is the d-dimensional har- 
monic model, and leads to the non-overlapping of 
contributions from different q vectors. The summation 
in (6) over m , , . . . ,  m~ is reduced to one term. 

(b) 1> d and a o = 80 for i < d, and o~ 0 has integer 
components for i > d. This model describes the anhar- 
monic approach where the effect of anharmonicity is 
described by l - d  terms. The summation over 
m ~ , . . . ,  rnt is restricted by the conditions 

I d 

E m,~, = E Mjqj, 
i = l  i = 1  

where Mj (j = 1 , . . . ,  d) are satellite indices of reflec- 
tion to be calculated. The rni and Mj are related by 

ma  = M. Note that ¢!i must be a complete basis set 
which can represent all reflections to be calculated. 

We obtain for the contribution of atom v to the 
scattering amplitude 

F~(Q) =f~(Q) exp (27riQ. r °) 

x exp -2~ri ~ Miq,.gv 
i = !  

oo I 

E H {J_,,,[2~.uv(i)] 
r r l l , . . . , r r t l = -  OD i = 1  

(met = M )  

x exp [-im~(,,( i)]}. (7) 

This expression is essentially equivalent to that 
given by Perez-Mato, Madariaga & Tello (1986), 
except for the use of the phase reference point g~, 
common to a group of atoms, which is typical for the 
molecular model. An analogous expression suitable 
for numerical integration over the internal coordin- 
ates has been derived by Yamamoto (1982). 

Treatment of symmetry 

Incommensurate crystals with d-dimensional modu- 
lation can be described as periodic arrangements in 
(3+d)-dimensional  space (Janner & Janssen, 1979; 
Janner, Janssen & de Wolff, 1983). The reciprocal 
base b * , . . . ,  b*÷a in (3 + d)-space was chosen in order 
to describe satellite reflections. The real diffraction 
pattern is a projection of the (3+d)-dimensional  
lattice onto R 3. The reciprocal base can be described 
a s  

b*=a* (i= 1,2,3); 
(8) 

b*+3=q,+e* ( i=  l , . . . ,  d). 

The additional e* vectors are perpendicular to R3; 
they are in general not an orthogonal set. 

The basis dual to the basis (8) in the ( 3 + d ) -  
dimensional space is 

d 

b , = a , -  Y. ( ~ . a , ) e j  ( i =  1,2,3);  
J=] (9) 

bi+3 = ei (i = 1 . . . .  , d) 

where ei is dual to e* ( i =  1 , . . . ,  d) in the internal 
space. 

The generalized periodic electron density t; can be 
defined as the Fourier transform of the ( 3 + d ) -  
dimensional diffraction pattern (see de Wolff, 1974). 
The real electron density in R 3 is the section of the 
(3 + d)-dimensional function t~ defined by conditions 
( r . e* )  =0,  where r e  R3+d. The coordinates of the 
positional vector r with respect to base b , , . . . ,  b 3 +  d 

are 

r t  
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where re is a column of three coordinates with respect 
to b~, b2, b3, and r~ is a column of d coordinates 
with respect to b4,. • . ,  b3+a. 

A (3 + d)-dimensional symmetry operation ,~J, 

rx \ r ~ / '  with t~(r~' r~) = ~(rE' r~)' 

is described by 

r ~  FJz r, \ s ~ /  \ r ~ ] '  (10) 

where F~, F ~  and r~ are 3x3,  d x 3  and d x d  
matrices respectively, describing the rotational part 
of SJ, and s~ and s~ are columns of dimensions (3 x 1) 
and (d x.1) respectively describing the translational 
part of SL The connection with the notation of paper 
I and de Wolff, Janssen & Janner (1981) is given by 
the following equivalences: 

~ R j, r; ~ ~J, r ¼  ,- - m*, SJE <-- s i and s~ <-- (sJ). 

All combinations of r ~ ,  1-'~ and l"~ are restricted 
by the equation (Janner & Janssen, 1979) 

= r ¼  

where the o- o are the components of qi with respect 
to a*, a* and a*, such that qi = ~, o'oa*. 

In order to evaluate the scattering of symmetry- 
related atoms according to.(7) the displacement u~ 
of the atom generated by S j must be related to that 
of the 'source' atom u~. Similarly to de Wolff, Janssen 
& Janner [(1981), expression (3.16)], we have the 
transformation law 

u+(g~.) = r~u.[(r~)-'(g~.-s~-r¼g~.)], (ii) 

where gt~ and gE~ are respectively the internal and 
external coordinates of the vector g,. 

Application of (7) requires the displacement of the 
symmetry-related atom in R3. Use of the d conditions 
(g~.e*) =0  and (9) gives 

g~,, = og~,,. 

Substitution in (11) finally leads to 

u+(og~.)  = r~u.[crg~.  + ( r~ ) - l ( crs~-  sJ,)], (12) 

in which each displacement is referred to its own 
phase reference point [this is a generalization of 
equation (12b) from paper I]. 

For the case of I waves (and d modulation vectors), 
the structure-factor formula (7) becomes, after 

summation over all symmetry-related atoms Ns, 

F~(Q) = ~ f~(Q) exp (2~riQr~) 
j = l  

x exp (-27riMF~o'g~) 

x exp [-27rMi(trs/E -s~)]  

co  I 

X X rI {J_,,,,[2¢rU+(i)] 
m l , . . . , m l = - - c o  i=  l 
(ma=Mr#t) 

x exp [- imo(+(i)]}  (13) 

where the superscript j for U+(i) and x~( i )  implies 
use of (4) with symmetry-related amplitudes. 

Symmetry restrictions resulting from special positions 

For an atom at r ~  with its phase reference point at 
a special position such that 

g~. = F ~ g ~ . + s ~ ,  (14) 

restrictions follow from the condition that the dis- 
placements must be invariant under the symmetry 
operation. Application of the transformation law (11 ) 
to the expression for the displacement (2) gives the 
following equation which leads to restrictions for 
U~(i) and U~(i): 

l 

Y. [U~(i) sin xi + UY(i) cos xi] 
i = l  

I 
j x t r = [' E[U,(i) sin x~ + UY(i) cos x~], (15) 

i = 1  

where the following abbreviations have been used: 

xi = 2¢rt~ig~ (16) 

= 2 - 

Here a~ is the ith row of the matrix a defined pre- 
viously. 

Symmetry restrictions applying to atoms in special 
positions have been used in previous studies (e.g. 
Yamamoto, 1983; Kucharczyk, Paciorek & Uszynski, 
1986). For the molecular displacement model special 
positions lead to further restrictions owing to the 
rigidity of the molecules. According to this model the 
atomic displacements may be described in terms of 
the translations and rotations of the rigid molecules, 

u, = U'+Ur X (re~-R),  (17) 

where R is the center of mass of the molecule which 
may be used as the phase reference point. For a 
molecule in a special position the symmetry element A .  

S~ transforms every atom of the molecule into some 
(not necessarily the same) atom of the molecule. 
There are two ways to derive the displacement of the 
transformed atom. The transformation law (11) may 
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be applied directly, or the rigid-body condition (17) 
may be applied to the transformed position of the 
atom. The requirement of uniqueness and the condi- 
tion S~R=  R leads to the following conditions for 
translations and rotations respectively: 

I 
[UX(i) sin xi + UY(i) cos x,] 

i=1 

l 
= E r~ [uT( i )  sin x'~ + UY(i) cos x'~] 

i=1 
(18) 

[UX(i) sin x, + U~(i) cos xi] 
i=1 

l 
= ~ (det F~)F~[UT(i) sin x'~ +U~(i) cos x'~], 

i=1 

where U~', U, r are translational and UT, U~ rotational 
amplitudes. The restrictions for the translational part 
of the molecular displacement are the same as those 
for atoms in special positions (15). 

Two examples will illustrate the use of these condi- 
tions: 

(1) Thiourea [atomic model: Yamamoto (1980); 
Kucharczyk, Paciorek & Uszynski (1986); molecular 
model: Gao, Gajhede, Mallinson, Pet~f~ek & 
Coppens (1987)], superspace group P : n m a : s l l ,  
d = l .  

(a) Atomic model. Atoms S and C are located on 
the mirror plane 

myl(0 , ½, 0) with F,  = -1.  

Because of the non-uniqueness of st for elements 
wi th/ ' i  = -1  [see de Wolff, Janssen & Janner (1981) 
and paper I], only the most convenient choices will 
be discussed, namely s~ = 0 and ½. The latter means 
that the center of symmetry is located at the origin 
of four-dimensional space. Let us select l harmonics. 

! 
This means that a ,  = n, x~ = nx and x~ = -nx+2rrns~  
where n stands for the order of the harmonic. From 
(15) we have 

U:(n  s i n ( n x ) = l - U : ( n ) b ]  

x (-1)  sin (nx-27rnsx)  

U~( n )hi cos ( nx ) = I - U~( n )b I cos ( nx - 2 rrns, ). 
\ / 

For s l = 0  we have l_r~(n) ,=UX(n)~=O and 
U~(n)b y =0;  for st=½, U Y ( n ) ~ = U Y ( n ) ¢ = O  and 
U~(n)b = 0 for odd-order harmonics, and UX(n)~ = 
UX(n)~ = O, U~(n)b = 0 for even-order harmonics. 

(b) Molecular model. In the molecular model the 
translational part is restricted in the same way as in 

the atomic model, but there are reverse conditions 
for components of rotational displacements because 
det ( F ~ ) = d e t  (my)= -1.  

(2) T T F -  T C N Q  (Coppens, Peffffzek, Levendis, 
Larsen, Paturle, Gao & LeGrand, 1987), superspace 
group P:P21/c:cmm, d =2. 

The TTF and TCNQ molecules are located at the 
centers of symmetry at (0, 0, 0) and (½, 0, 0) for which 
we have (F~) 0 =-6 , j .  The simple harmonics with ql 
and q2 were used for a description of the modulation. 
For a choice of origin at the center of symmetry in 
five-dimensional space, application of (17) leads to 
the conclusion that the translational and rotational 
waves are pure sin and cos waves, respectively (U, y = 
0, u ;=o) .  

Implementation of the expressions 

A least-squares program, J A N A 5 ,  has been written 
for two-dimensionally modulated crystals, using 
expression (13). It is based on the one-dimensional 
version J A N A  described earlier (paper I; Pefff~ek, 
Coppens & Becker, 1985). The infinite summation 
(for the anharmonic case) is truncated by the addi- 
tional condition Ira, l<--4 ( i=  1 , . . . ,  d). Similarly the 
satellite index is limited to 4. The displacements of 
the atoms can be refined individually or as a part of 
a rigid molecule. The program allows simultaneous 
refinement of atomic positional and thermal param- 
eters and extinction parameters, in addition to the 
displacement coordinates. Up to eight waves can be 
selected as linear combinations of ql and q2, which 
enables refinement of six higher-order harmonic con- 
tributions. 

The program has been successfully tested with the 
15K data on the insulating phase I of TTF-TCNQ, 
which is two-dimensionally modulated (Coppens, 
Pefff~ek, Levendis, Larsen, Paturle, Gao & LeGrand, 
1987). Additional applications to the insulating 
phases of low-dimensional organic solids are being 
planned. 
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Abstract 

The interaction of a synchrotron beam incident on a 
'perfect' monochromator crystal, M, and then on a 
small single crystal, c, is examined and the resultant 
2D shape in Aw, A20 space of Bragg reflections from 
c is deduced. This allows (a) identification of the 
components intrinsic to M which contribute to the 
shape, namely its effective aperture and angular band- 
pass, and (b) prediction of the change of shape with 
0c. Projection of the 2D shape onto the Ato axis yields 
the corresponding 1D 'counter' profile and shows 
that, for Gaussian-like components, the full width at 
half maximum (FWHM) of the profile is [p2+ 
q2(t--tmin)2] 1/2 where p and q are constants, t =  
tan Oc/tan OM and tmin corresponds to the minimum 
dispersion condition. It is suggested that, for similar 
conditions, the relationship determining scan range 
should be of a similar functional form rather than 

• 0 
the conventional linear relationship. 

Introduction 

The angular divergences involved in synchrotron 
beam lines are considerably smaller than those associ- 
ated with conventional X-ray sources• Indeed, one 
might be inclined to conclude, following the dis- 
cussion in Willis (1960), relating to divergence (a) --- 
0 °, that this near-parallelism could lead to the 
minimum dispersion condition for the 'counter' 
profile in the synchrotron-radiation (SR) case occur- 
ring nearer t = - 2  than t = -1 ,  t being tan 0c/tan OM. 
However, as we will show, this does not appear to 
be the case. 

Nevertheless, the smaller divergence does provide 
a greater possibility, in single-crystal diffractometry 
on a beam line, of deriving quantitative estimates of 
the reflectivity curves of specimen crystals which, for 
'imperfect' crystals, is closely allied to the mosaic 
spread, Mathieson (1984a). Even so, the influence of 
components intrinsic to the system, such as the 
effective aperture (illuminated length) of the mono- 
chromator crystal and the corresponding angular 
bandpass, cannot be ignored. It is therefore useful to 
establish their influence on the shape of Bragg reflec- 
tions, especially in respect of change with scattering 
angle of the specimen crystal. This information can 
then be used to derive realistic estimates of reflectivity 
curves by deconvolution of experimental data, cf. 
Schneider (1977). 

For the combination of a 'perfect' monochromator 
crystal, M, and a specimen crystal, c, of nominally 
zero mosaic spread, the 2D shape in Aw, A20 t°) space 
(for terminology, see Mathieson, 1983) of the Bragg 
reflection from c is deduced and its change with 0c 
is studied• The corresponding change in the more 
generally used 1D 'counter' profile is then derived 
and compared with published data. 

From the conclusions concerning counter profile 
width, observations are offered on a form of relation- 
ship, different from the accepted linear one, which 
would appear to be appropriate to determine scan 
range for small-crystal measurement on synchrotron 
sources. Use of this relationship should ensure 
uniform rather than variable truncation, e.g. 
Denne (1977), and hence estimates of integrated 
intensity which are consistent from reflection to 
reflection. 
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